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Abstract

We introduce generalised geometry in the form given through structure group

O(d, d). Then we present a study of consistent truncations on the Sd sphere by

employing the GL+(d + 1, R) generalised geometry. We show how a generalised

global frame algebra with constant coefficients naturally gives a notion of "gener-

alised parallelisability" to the original manifold. Then a generalised Scherk-Schwarz

reduction acts as a consistent truncation and encodes the scalar fields of the reduced

theory. We prove that all spheres Sd admit generalised parallelisations and as a con-

sequence, all sphere compactifications, including the consistent truncations, can be

viewed as generalised Scherk-Schwarz reductions. Finally we present an applica-

tion and discussion on the special case of S3.
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Chapter 1

Introduction

Modern Theoretical Physics is based on the principle that at the core of every fun-

damental theory there are a priori acceptable symmetries. General Relativity, for

example, the first modern theory of gravity, is constructed on the symmetry group

of local diffeomorphisms on the four-dimensional space-time manifold. In order to

understand the theory, one has to employ the appropriate mathematical framework

to make these fundamental symmetries obvious.

Supergravity extends the theory of General Relativity with the requirement that

the space-time manifold also preserves Supersymmetry. The properties of Super-

symmetry in eleven dimensions for example dictates the content of the Supergrav-

ity field multiplet forcing it to include among others a two-form field Bµν called

the B-field, a scalar field φ called the dilaton and a gµν field called the graviton

[26]. These compose a sector of the Supergravity called the Neveu-Schwarz or the

NSNS sector. Some of these fields, as an example here the B-field, exhibit other

types of symmetries, such as, in this case, gauge symmetries. In studying Super-

gravity, building an extension of our mathematical framework that includes both

diffeomorphisms and gauge symmetries provides an improved avenue for under-

standing this fundamental theory better.

Such an extension is provided by Generalised Geometry. It is a new framework

that expands the key notions of differential geometry to explore the generalised tan-

gent space, defined as the direct sum of multi-vector tangent spaces and form-field
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tangent spaces. This allows one to define further generalised objects such as a gen-

eralised Lie derivative, generalised Lie bracket, generalised frame or generalised

metric and use them in a coherent way that makes obvious the covariance. Beyond

this however, Generalised Geometry can be utilised for even more purposes when

it comes to Supergravity as will become apparent very shortly.

The main purpose of this work is to study consistent truncations of Supergrav-

ity theories on round d-spheres. A truncation of a Supergravity is a reduction of

the theory that only keeps a finite subset of fields from the original un-truncated

multiplet. A consistent truncation on the other hand is a reduction of the content

of the theory with the condition that any solution of the truncated theory is also a

solution of the un-truncated one. A consistent truncation hence preserves the same

number of supersymmetries as the original un-truncated theory.

There are numerous documented situations of consistent truncations of Super-

gravity theories, for which [7] presents an appropriate review. A classic example is

a local group manifold M with a notion of parallelisability (i.e. it is parallelisable),

given by the property that it admits a global frame êa on M and the Lie bracket of

the frame satisfies

[êa, êb] = fab
c êc

with constant coefficients fab
c. If additionally fab

b = 0, called the "unimodular con-

dition" [22], then we have a consistent truncation on M [29] [28]. And "if the theory

is pure metric, the scalar fields in the truncated theory come from deformations of

the internal metric" [22], such as for example through a Scherk-Schwarz reduction

given by a rotation of the global frame [29] [28].

When it comes to spheres however, there is a small set of remarkable consistent

truncations, apart from which the majority of cases of reductions are not consis-

tent [22], and there is “no known algorithmic prescription” [7] to explain how the

special ones arise.

This work will present how by employing Generalised Geometry on the Sd
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sphere, specifically GL+(d + 1, R) Generalised Geometry, one can arrive at a no-

tion of generalised parallelisability by defining a generalised global frame {ÊA} on

the generalised tangent space which satisfies [22]

LÊA
ÊB = XAB

CÊC (1.1)

with constant XAB
C, making M an analogue of a local group manifold in Gener-

alised Geometry terms [13]. Given the general parallelisation {ÊA}, we are lead

to the conjecture based on analogy with the regular case that there is a consistent

truncation on M that keeps the same number of symmetries and the theory’s scalar

fields are given through a generalised version of Scherk-Schwarz reductions, i.e.

rotations of the generalised frame. [22] We will hence show that "all spheres Sd are

generalised parallelisable" [22].

The thesis is structured as follows. The first chapter after the Introduction,

Chapter 2, reviews key notions from differential geometry needed for the calcu-

lations, and then introduces key concepts from Bundle theory that are required

to set up any generalised geometry framework. Chapter 3 introduces the O(d, d)

Generalised Geometry as a building block for more complicated geometries and all

the necessary generalised objects (Dorfman derivative, Courant bracket etc, gen-

eralised metric) that will be used for the following cases as well. Chapter 4 intro-

duces the GL+(d + 1, R) Generalised Geometry and its conformal split frame as

part of defining a generalised global frame. Chapter 5 sets up the notion of gen-

eralised parallelisability on the Sd sphere and then proceeds to define generalised

Scherk-Schwarz reductions and analyse the field content after consistent trunca-

tions from the standpoint of generalised geometry, proving our conjecture from the

Introduction. Finally, Chapter 6 studies an application on the special case of S3 also

analysing the link with gauged Supergravity. In the end, we present the Conclu-

sions (7).
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Chapter 2

Fundamental Concepts for

Generalised Geometry

In order to construct the Generalised geometry around any symmetry group, a

number of key notions that conceptualize the mathematical framework we aim to

generalize need to be defined. Once they are described, the next step is to illustrate

the key components that extend them into the language of Generalised geometry.

In this Chapter we will follow [23], [12], [18] and [20] to present the most important

notions from Differential Forms, Riemannian Geometry and Bundle Theory that

will be encountered in the following chapters when describing our Generalised

geometries.

2.1 Key Notions on Differential Forms

In this section we will very briefly recall several key notions on forms from Differ-

ential Geometry [18], [23] that will be used extensively in all subsequent chapters.

Definition 2.1.1 The exterior product of two forms λ, ρ is defined using the Cartan

wedge product on the basis covectors as

∧ : Λr1(M)×Λr2(M) → Λr1+r2(M)

λ, ρ → λ ∧ ρ

(2.1)
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given by

λ ∧ ρ ≡ 1
r1!r2!

λα1...αr1
ρβ1 ...βr2

dxα1 ∧ · · · ∧ dxαr1 ∧ dxβ1 ∧ · · · ∧ dxβr2 (2.2)

The exterior product satisfies graded commutativity and associativity.

Definition 2.1.2 The exterior derivative of a form field ω = 1
r! ωα1...αr dxα1 ∧ · · · ∧ dxαr

is the natural notion of differentiation, denoted d:

d : Λr(M) → λr+1(M)

ω → dω

(2.3)

where

dω =
1
r!

(
∂

∂xµ
ωα1...αr

)
dxµ ∧ dxα1 ∧ · · · ∧ dxαr (2.4)

d satisfies the graded Leibnitz rule, with λ ∈ Λr1(M), ρ ∈ Λr2(M):

d(λ ∧ ρ) = (dλ) ∧ ρ + (−1)r2 λ ∧ (dρ) (2.5)

and is nilpotent d2 = 0 due to symmetry of the partial derivative. This is an expres-

sion of the principle that "the boundary of a boundary is zero", since the action of

the exterior derivative d corresponds to taking the boundary of the surface associ-

ated with a differential r-form.

Definition 2.1.3 The interior product provided by a vector field X is a natural map

that reduces the degree of a form. Denoted iX,

ix : Λr(M) → Λr−1(M)

ω → iXω

(2.6)

it is given by

(iXω) ≡ ω(X) (2.7)
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or in coordinates,

iXω =
1

(r− 1)!
Xνωνµ1 ...µr−1 dxµ1 ∧ · · · ∧ dxµr−1 (2.8)

From the definition it is also nilpotent i2
X = 0.

Definition 2.1.4 Let M be an m-dimensional manifold and p, p′ ∈ M two points.

Given a vector field V, we may differentiate a vector field U with respect to V to

obtain another vector field. This is given by the Lie derivative, denoted LV , defined

as in [18] by

LVU ≡ lim
ε→0

σV(−ε)∗U|p′ −U|p
ε

∈ Tp M (2.9)

where σV(ε) : M → M is the integral curve through p with parameter ε ∈ R such

that p′ = σV(ε)p.

Writing the vector field U in a coordinate basis, using its transformation laws and

noting the relation between the coordinates for the two points, U can be pulled

back from p′ to p. Then, Taylor expanding to linear order in ε, it can be shown that

the Lie derivative of a vector field is given by

LVU = (vβ∂βuα − uβ∂βvα)∂α (2.10)

In a similar manner it can be shown that the Lie derivative of a covector field is

given by

LVλ = (vβ∂βλα + λβ∂βvα)∂α (2.11)

with λ ∈ T∗p M.

The Lie derivative gives the Lie bracket [12] as

LVU = [V, U] (2.12)
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a bilinear, skew-symmetric map that also satisfies the Jacobi identity,

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 (2.13)

It can also be shown that for general forms, the Lie derivative can be written [18] in

terms of the interior product and exterior derivative as

LVω = (diX + iXd)ω (2.14)

where ω is a general r-form on M.

2.2 Key Notions from Riemannian Geometry

Riemannian geometry is the structural framework in which Einstein’s theory of

gravitation is formulated. Its core aspect is that a differential manifold M can carry

an additional structure if it is equipped with a globally defined metric tensor g, that

will act as a natural generalization of the inner product between two vectors in Rn

to an arbitrary manifold.

Definition 2.2.1 Given a manifold M, A Riemannian metric is a (0, 2)-tensor field g

that is symmetric and positive, i.e. at any point p ∈ M, for any vectors V, W ∈ Tp M,

g(V, W) = g(W, V)

g(V, V) ≥ 0
(2.15)

with equality in the second line only if V = 0.

A Riemannian manifold is then defined as the pair (M, g) of differential manifold M

and metric g [18].

Definition 2.2.2 A pseudo-Riemannian metric is a symmetric (0, 2)-tensor field g, but

where instead of being positive, the second line above is replaced by the property
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that at a point p ∈ M,

if g(V, W) = 0, ∀ V ∈ Tp M⇒W = 0 (2.16)

A pseudo-Riemannian manifold is then defined as the pair (M, g) of differential man-

ifold M and metric g with the weakened condition 2.16.

The metric tensor g defines the non-degenerate inner product at the point p ∈ M,

g : Tp M× Tp M → R

V, W → g(V, W)
(2.17)

as well as a canonical volume form Volg, provided that the manifold M is ori-

entable, given by

Volg ≡
√
|det gµν| dx1 ∧ · · · ∧ dxm (2.18)

which, although is independent of the coordinate chart, is also a pseudo-tensor, as

the sign of the volume element flips if it is defined on a manifold with the opposite

orientation, hence the requirement for the manifold to be orientable [18].

Definition 2.2.3 The Hodge star ?g : Λr M → Λm−r M is a natural isomorphism

between the space of r-forms and the space of (m − r)-forms, where m is the di-

mension of M and the map, induced by the metric g, is given for a general r-form

ω = 1
r! ωµ1...µr dxµ1 ∧ . . . dxµr by

?g ω =

√
|g|

r!(m− r)!
ωµ1...µr ε

µ1...µr
µr+1 ...µm dxµr+1 ∧ · · · ∧ dxµm (2.19)

where εµ1...µm is the totally antisymmetric symbol, with components taking the val-

ues ±1. Note that by contracting the original r-form defined on a r-dimensional

submanifold with the ε symbol, we are implicitly using the metric, hidden inside

the mixed signature of ε. This leads to a notion of "perpendicularity", making the

(m − r)-form Hodge dual the local orthogonal complement of the initial r-form.
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Under this mapping, the volume element can be written as ?g1 = Volg and we can

use the Hodge star to define an inner product on the vector space of r-forms

(·, ·) : Λr M×Λr M → R

λ, ρ → (λ, ρ) ≡
∫

M
λ ∧ (?gρ)

(2.20)

which is symmetric (λ, ρ) = (ρ, λ) [18].

Definition 2.2.4 An affine connection ∇ is a bilinear map [18]

∇ : Γ(TM)× Γ(TM) → Γ(TM)

U, V → ∇UV
(2.21)

where we use the notation Γ(TM) for the space of the section of tangent bundle

TM (see more on bundles in the next section). For any U, V ∈ TM and for any

f ∈ F (M), ∇must satisfy

∇ f VU = f∇VU

∇V( f U) = V[ f ]U + f∇VU
(2.22)

We can write the affine connection with respect to a basis vector field, due to its

linearity, given by

∇µeν ≡ Γµν
αeα (2.23)

where the {Γµν
α} ⊂ F (M) are the connection components and ∇µ := ∇eµ .

2.3 Bundles

As the prerequisite mathematical framework from Differential Geometry has been

established, we will now proceed to laying the foundation of Generalised Geome-

try by defining its building blocks. Following [23], [20] and [30], this section will

present key concepts and objects from Bundle Theory that will be used to construct

Generalised geometries in the next chapters.



Chapter 2. Fundamental Concepts for Generalised Geometry 10

2.3.1 Fibre Bundles

Definition 2.3.1 A (differentiable) fibre bundle (E, π, M, F, G) is the collection of the

following elements [23]:

1. A differentiable manifold E called the total space (sometimes simply referred

to as ’the bundle’

2. A differentiable manifold M called the base space

3. A surjective map π : E → M called the projection. In short, the bundle can be

written as E π−→ M

4. A differentiable manifold F called the fibre. For a p ∈ M, Fp ≡ π−1({p}) is

the fibre at p, where π−1 is the inverse image (preimage) of π. Then, ∀p ∈ M,

π−1({p}) ∼= F (i.e. Fp ∼= F)

5. A Lie Group G called the structure group that acts on the fibre F on the left.

This is the group of transition functions

6. A set of open covering {Ui} of M with a diffeomorphism φi : Ui × F →

π−1(ui) such that π ◦ φi(p, f ) = p, with f ∈ F, ui ∈ Ui. The map φi is called

the local trivialization

7. The maps tij : F → F on Ui ∩ Uj 6= ∅, which we want to be elements of

G, given by tij(p) ≡ φ−1
i,p ◦ φj,p, where we write φi(p, f ) = φi,p( f ). Then

φi,p : F → Fp is a diffeomorphism, and φi and φj are related by the smooth

map tij : Ui ∩Uj → G as φj(p, f ) = φi(p, tij(p) f ). The ti,j maps are called the

transition functions ∈ G

In order for the local pieces of the fibre bundle to be glued consistently, we also

require the following conditions on the transition functions [30]:

• tii(p) = 1, p ∈ Ui

• tij(p) = tij(p)−1, p ∈ Ui ∩Uj
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• tik(p) = tij(p)tjk(p), p ∈ Ui ∩Uj ∩Uk

Definition 2.3.2 Given fibre bundle E π−→ M, a section of the bundle σ : M → E is

a smooth map that satisfies π ◦ σ = 1M. The set of all sections is denoted Γ(M, F)

and it is clear that σ(p) = σ|p ∈ Fp = π−1(p).

Intuitively, the fibre at the point p ∈ M is a set of points in E attached to the point

p and all the points in the fibre Fp are sent to the point p by the projection map. On

the other hand, a section on the bundle is a map σ that takes each point p ∈ M to a

certain point in its fibre Fp, while the projection map π takes σ(p) ∈ Fp ⊆ E back to

point p ∈ M [30].

Definition 2.3.3 Given fibre bundle E π−→ M, a subbundle is a bundle E′ π′−→ M′ if

E′ ⊆ E, M′ ⊆ M and π′ := π|E′ .

Definition 2.3.4 Let E π−→ M, E′ π′−→ M′ be two fibre bundles. A bundle map is a

smooth map f̃ : E′ → E that maps each fibre F′p of E′ onto Fq of E. This means that

f̃ naturally induces a smooth map f : M′ → M such that f (p) = q (see below) [20].

Note that f̃ is not necessarily a bundle map if it maps different parts of fibre F′p onto

different fibres on E.

Definition 2.3.5 Given two manifolds M and N, the triple (M× N, π, M) is called

a product bundle if:

π : M× N → M

(p, q)→ p
(2.24)

and π is a continuous and surjective map. A more extended description is provided

in [23].
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Definition 2.3.6 Two bundles E′ π′−→ M and E π−→ M are equivalent bundles if there

exists a bundle map f̄ : E′ → E such that f : M → M is the identity map and f̄ is a

diffeomorphism:

such that the above diagram commutes.

Definition 2.3.7 Given two bundles E′ π′−→ M′ and E π−→ M and two maps u : E →

E′ and v : M→ M′, the pair (u, v) is a bundle morphism if π′ ◦ u = v ◦ π:

Definition 2.3.8 Two bundles are isomorphic if there exist bundle morphisms (u, v)

and (u−1, v−1) satisfying:

Then (u, v) is a bundle isomorphism and we write E π−→ M ∼=
bdl

E′ π′−→ M′ [30].

Definition 2.3.9 A vector bundle E π−→ M is a fibre bundle whose fibre is a vector

space. The tangent bundle is a vector bundle because according to the definition, its

fibre is the vector space Rn. The tangent bundle from Differential Geometry, which

is defined as T(M) ≡ ∪
p∈M

Tp(M), can also be written as (T(M), π, M, Rm, GL(m, R)),

with π : T(M) → M the projection map, differential manifold M and structure

group GL(m, R).
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Definition 2.3.10 A fibre bundle E π−→ M is trivial if its base space M is contractible

to a point.

Another definition: A bundle E π−→ M is trivial if it is isomorphic to a product

bundle.

A cylinder is an example of a trivial bundle (globally and locally), while the Möbius

strip is an example of an only locally trivial bundle. [30]

2.3.2 Principal and Associated Bundles

This subsection will define several key notions related to Principal Bundles and

then Associated Bundles. Speaking very broadly, a principal fibre bundle is a bundle

whose typical fibre is a Lie group. [30] They are a key concept that will reappear

in the following chapters when frame bundles and conformal split frames on the

Generalised geometry will be introduced. In the current segment we will be fol-

lowing only [23] and [30]. The rest of the notions on principal bundles not defined

here are expanded upon in Appendix A.

Definition 2.3.11 Given a Lie group G, a principal G-bundle is a smooth bundle (E, π, M)

equipped with a free right G-action and

where ρ is the quotient map, which sends each p ∈ E to its equivalence class (i.e.

orbit) in the orbit space E/G. The condition of smoothness for a bundle (E, π, M)

is just the requirement that E and M are smooth manifolds and the projection map

π : E→ M is smooth.

Definition 2.3.12 An associated fibre bundle is a fibre bundle that is associated in

a very precise manner to a principal G-bundle. [30] Given a principal G-bundle

(P, π, M) and a smooth manifold F endowed with a left G-action ., we can define
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1. PF := (P× F)/ ∼G, with the equivalence relation ∼G given by

(p, f ) ∼G (p′, f ′) :⇔ ∃g ∈ G s.t. p′ = p / g and f ′ = g−1 . f (2.25)

and we will write the points of PF as [p, f ].

2. The map πF given by

πF : PF → M

[p, f ]→ π(p)
(2.26)

If [p′, f ′] = [p, f ], for some g ∈ G then

πF([p′, f ′]) = πF([p / g, g−1 . f ]) := π(p / g) = π(p) =: πF([p, f ]) (2.27)

and so the map πF is well defined. Then we say that the bundle (PF, πF, M)

is the associated bundle to (P, π, M), F and ..

Associated bundles are related to their principal bundles in a manner that gives

the transformation law for components under a change of basis, which can be seen

exemplified in Appendix B for the concept of frame bundles.

Definition 2.3.13 Let G be a Lie group with Lie algebra g. Given a principal G-

bundle P over a smooth manifold M and the adjoint representation of G, Ad : G →

Aut(g) ⊂ GL(g), the adjoint bundle adP = P×ad g is the associated bundle to P with

fibre g and representation Ad, where ×ad is the projection from the bundle onto the

adjoint representation of g, Adg. [23]

In explicit form, elements of the adjoint bundle are equivalence classes of pairs

[p, x] for p ∈ P, x ∈ g such that [p / g, x] = [p, Adgx], ∀g ∈ G. Because the structure

group of the adjoint bundle is composed of Lie algebra automorphisms, then the

fibers carry a Lie algebra structure that makes the adjoint bundle into a bundle of

Lie algebras over M.
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Chapter 3

O(d, d) generalised Geometry

This chapter provides an introduction to generalised Geometry, covering the orig-

inal O(d, d) generalised geometry considered by Hitchin and Gualtieri [15] [14].

This particular geometry is later used in Chapter 6 for an application with con-

sistent truncations on the sphere S3. The current chapter starts with a closer in-

spection of the gauge symmetries of the B-field and the resulting patching rules

for one-forms that are part of the generalised tangent bundle, introduced in the

following section. The chapter continues with the formal description of the O(d, d)

generalised geometry and the differential structures that can be defined on the gen-

eralised space, along with their symmetries under B-field transformations. It con-

cludes with the construction of a generalised Riemannian metric on the generalised

tangent space.

3.1 B-field, Bosonic Symmetries and Patching Rules

The action that describes the bosonic NSNS sector of Type II Supergravity has ex-

tended symmetry beyond the local diffeomorphism invariance from General Rel-

ativity. As it will become apparent in the course of this chapter, the local gauge

transformations of the two-form B-field that need to be included will give rise to

a larger natural O(d, d) structure on the generalised tangent space. [4] More pre-

cisely, the NSNS bosonic symmetry group has a fibre structure that infinitesimally
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combines both diffeomorphisms and the local gauge symmetry and such a trans-

formation can be expressed as

φ′ = φ + Lvφ

g′ = g + Lvg

B′i = Bi + LvBi − dλi

(3.1)

where v is some vector from Γ(TM), g is the graviton field, scalar field φ is the

dilaton and λi is a one-form field from Γ(T∗M). Note that in order to include the

dilaton as well, the generalised space needs to be extended to O(d, d) ×R+, but

for the purposes of this chapter we will be focusing only on O(d, d) and the B-

field. Also note that under the transformation for the B-field in 3.1, the action is

invariant since it only depends on H = dB and not on B itself, and d2B = 0 since d

is nilpotent. [4]

Similarly to the electromagnetic field, the B-field is only locally defined since the

only requirement on H is to be a closed form, and so in an overlap of coordinate

patches Ui ∩Uj 6= ∅ the components of the B-field can be related by

Bi = Bj − dΛij (3.2)

Using 2.14, the Lie derivative of dΛij can be expressed as

LvdΛij = (div + ivd)dΛij = divdΛij (3.3)

since the exterior derivative is nilpotent. Hence the B-field symmetry transforma-

tion from 3.1 can be re-written to obtain the patching rules for the components of

the one-form λi on the overlap

LvBi − dλi = Lv(Bj − dΛij)− dλi

= LvBj + divdΛij − dλi

(3.4)
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Hence, one can write

dλj = dλi + divdΛij

λi = λj − ivdΛij

(3.5)

This specific patching actually describes the components of the generalised tan-

gent bundle E, which will be expanded upon in the next section,

Vi = vi + λi ∈ Γ(TUi ⊕ T∗Ui) (3.6)

for a section of E on patch Ui, with

Vi = edΛij Vj (3.7)

on the overlap Ui ∩Uj. The one-forms Λij also satisfy [4]

Λij + Λjk + Λki = dΛijk (3.8)

on the overlap Ui ∩Uj ∩Uk, making the B-field a “connection structure on a gerbe”

[16] (i. e. "describing a hierarchy of successive gauge transformations on intersec-

tions" such as the one in 3.8) [3].

3.2 Generalised Tangent Bundle and the Natural Metric

As seen from 3.6, the generalised tangent bundle E over the entire manifold M is

isomorphic to the direct sum between the tangent bundle TM and the cotangent

bundle T∗M, i.e.

E ' TM⊕ T∗M (3.9)
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and we can hence write a generalised vector V ∈ Γ(E) as

V =

v

λ

 (3.10)

or sometimes for simplicity V = v + λ ∈ Γ(E), where V is a (d + d)-column vector,

with v ∈ Γ(TM) and λ ∈ Γ(T∗M). [13]

One can use the patching rules from 3.5, knowing that for two different patches

Ui and Uj, the relation between the vectorial components is vi = vj, to express the

relation between the components of the entire generalised vector on the overlap of

the two charts vi

λi

 =

 vj

λj − ivj dΛij

 (3.11)

Furthermore, one can define the natural metric tensor by the matrix [4]

η =
1
2

 0 1d

1d 0

 (3.12)

and given two generalised vectors V = v + λ ∈ Γ(E), U = u + ρ ∈ Γ(TM) use it to

define a notion of inner product of generalised vectors

〈·, ·〉 : E× E→ Λd−1T∗M

(V, U)→ 〈V, U〉 = VTηU
(3.13)

and after plugging in 3.11 and 3.12 one can see that the inner product is given by

〈V, U〉 ≡ 1
2
(λ(u) + ρ(v)) (3.14)

The natural metric has 2d eigenvalues, with a number of d eigenvalues being

equal to − 1
2 and d eigenvalues equal to 1

2 , i.e. the metric signature is (−1, 1). Thus

the group of morphisms that preserves the inner product is isomorphic to the Lie
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group O(d, d) and so O(d, d) is the structure group of the generalised tangent bun-

dle E.

One can note that the dual generalised tangent bundle is also defined, since

the tangent and cotangent bundles are dual to each other, and it is given by E∗ =

T∗M⊕ TM. This means that given a generalised vector V ∈ Γ(E), written in com-

ponent form using generalised indices, the natural metric defines a lowering map

ηMN : E→ E∗ given by

ηMNVM = VN (3.15)

with VN ∈ Γ(E∗), and similarly the inverse natural metric gives a raising map.

Lastly, one can use the anti-symmetry of the interior product acting on forms,

iviuλ = vµuνλµν = −vµuνλνµ = −iuivλ, to check the independence of the inner

product 3.14 on the coordinate system

〈Vi, Ui〉 =
1
2
(λi(ui) + ρi(vi))

=
1
2
(iui λi + ivi ρi)

=
1
2
(iuj(λj − ivj dΛij) + ivj(ρj − iuj dΛij))

= 〈Vj, Uj〉 −
1
2
(iuj ivj Λij + ivj iuj Λij)

= 〈Vj, Uj〉

(3.16)

3.3 Dorfman Derivative and the Courant Bracket

Similarly to the notion of a Lie derivative from Differential Geometry as presented

in 2.1.4, one can define a generalization that combines the action of infinitesimal

diffeomorphisms generated by v and local gauge transformations of the B-field,

generated by λ on the generalised tangent bundle, given a generalised vector V =

v + λ ∈ Γ(E) [4]. This indeed gives an operator LV acting on another generalised

vector U = u + ρ ∈ Γ(E), called the Dorfman derivative or the generalised Lie
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derivative, and is defined as [13]

LVU ≡

 Lvu

Lvρ− iudλ

 (3.17)

Note that if the point p in which generalised vector U is considered is the origin

(i.e. U ∈ Γ(E0)), then LV is simply the Dorfman bracket treated extensively in [9].

To be able to write LVU in a O(d, d) covariant manner, one can write its terms

in a coordinate basis on a chart {Ui} of manifold M. The vectorial components are

then v = vµ∂µ, u = uν∂ν, and we can use 2.10 to obtain the vectorial part (index

M ∈ [1, d]) of the Dorfman derivative

LVUM = Lvu = (vβ∂βuα − uβ∂βvα)∂α (3.18)

One can similarly use 2.11 to write the form part of the Dorfman derivative

(index M ∈ [d, 2d]), with λ = λµdxµ, by first noting that

iudλ = iu((∂νλµ − ∂µλν)dxν ∧ dxµ) = uν(∂νλµ − ∂µλν)dxµ (3.19)

where 2.1.2 and 2.1.3 were used. Then one can immediately plug in 3.19 and 2.11

to rewrite the form part of the Dorfman derivative as

LVUM = Lvρ− iudλ = (vν∂νρµ + ρν∂µvν)dxµ − uν(∂νλµ − ∂µλν)dxµ (3.20)

Collecting all terms in 3.20 and combining with 3.18, one can make use of the

raising and lowering maps of the natural metric to raise or lower generalised in-

dices to rewrite the Dorfman derivative using only the generalised vectors and a

generalised partial derivative operator defined as [4]

∂M =

 ∂µ, M ∈ [1, d]

0 otherwise
(3.21)
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Hence the Dorfman derivative can be written in terms of generalised objects (as in

[31], [32], [17]):

LVUM = VN∂NUM + (∂MVN − ∂NVM)UN (3.22)

It can also be shown that the Dorfman derivative satisfies the Leibniz identity

3.23, giving E the structure of a "Courant algebroid" [3]:

LU(LVW)−LV(LUW) = LLUVW (3.23)

In a similar manner, one can define a generalised version of the Lie bracket

given by 2.12, called the Courant bracket [6], which is a map J·, ·K : E × E → E

taking V, U ∈ Γ(E) into another generalised vector JV, UK ∈ Γ(E) given by

JV, UK ≡

 [v, u]

Lvρ−Luλ− 1
2 d(ivρ− iuλ)

 (3.24)

One can observe that using 3.17 one can write

LVU −LUV =

 Lvu−Luv

Lvρ− iudλ−Luλ + ivdρ

 (3.25)

with Lvu − Luv = [v, u] − [u, v] = 2[v, u] due to the anti-symmetry of the Lie

bracket, which looks closer to the form of the Courant bracket from 3.24. One can

also use 2.14 to obtain for the interior product with respect to a vector of the exterior

derivative of a one-form ω, that is ivdω = Lvω − divω. This can be plugged in to

the second row of 3.25 to obtain

Lvρ− iudλ−Luλ + ivdρ = Lvρ−Luλ−Luλ + diuλ + Lvρ− divρ

= 2(Lvρ−Luλ− 1
2

d(ivρ− iuλ))
(3.26)

Hence one can write that LVU −LUV = 2JV, UK or alternately that

JV, UK =
1
2
(LVU −LUV) (3.27)
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i.e. the Courant bracket is the antisymmetrisation of the Dorfman derivative. In fact this

is the formal definition of the Courant bracket and we will be using it from now on

in the subsequent chapters when defining new generalised geometries.

By using both 3.27 and 3.22 the form of the Courant bracket in terms of gener-

alised objects can also be obtained

JV, UKM = VN∂NUM −UN∂NVM − 1
2
(VN∂MUN −UN∂MVN) (3.28)

and it can also be shown that LJU,VKW = LLUVW, which is another form of the

Leibniz identity 3.23. The term in round brackets in 3.28 impedes the Courant

bracket from satisfying the Jacobi identity, which means that unlike the Lie bracket,

the Courant bracket does not belong to a Lie algebra.

3.4 Symmetries of the Generalised Geometry Structures

This section will explore the decomposition of the Lie algebra related to the sym-

metry group that preserves the inner product 3.14 and will then study several im-

portant symmetries of the generalised geometry structures with respect to the dif-

feomorphisms and B-field transformations.

The connected subgroup of O(d, d) for which we are interested in calculating

the Lie algebra element is SO(d, d) and it is given by

SO(d, d) = {M ∈ GL(d, R) | MTηM = η, detM = +1} (3.29)

The corresponding Lie algebra is so(d, d) and thus M ≡ etX ∈ SO(d, d), for t ∈ R

and X ∈ so(d, d). In order to get the algebra element, we identify the Lie al-

gebra so(d, d) with the tangent space T1SO(d, d) at the identity 1. Then for any

X ∈ so(d, d) we can pick a curve a : R → SO(d, d) such that its derivative at 0 is

a′(0) = X. Since for the real parameter q, a(q) ∈ SO(d, d), one can write

a(q)Tηa(q) = η (3.30)
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and differentiating with respect to q gives

a′(q)Tηa(q) + a(q)Tηa′(q) = 0 (3.31)

Evaluating at q = 0 gives

XTη + ηX = 0 (3.32)

Now one can write the Lie algebra explicitly by working out the linear conditions

determined by 3.32. Writing X in generic matrix form X =

A B

C D

, 3.32 can be

written explicitly as

0 =

A B

C D


T

1
2

 0 1d

1d 0

+
1
2

 0 1d

1d 0


A B

C D


0 =

CT AT

DT BT

+

C D

A B


(3.33)

and hence CT = −C, BT = −B, AT = −D and so A = −DT. This gives the final

form of the Lie algebra element X

X =

A β

B −AT

 (3.34)

where A ∈ EndTM (i.e. A : TM→ TM), B ∈ Λ2T∗M (a two-form) and β ∈ Λ2TM

(a bivector). [19] This gives the Lie algebra decomposition as

so(d, d) = EndTM⊕Λ2T∗M⊕Λ2TM (3.35)

with EndTM = TM⊕ T∗M.



Chapter 3. O(d, d) generalised Geometry 24

The transformation defined by A =

A 0

0 −AT

 applied to generalised vector

V is the diffeomorphism given by

eAV =

eA 0

0 e−A∗


v

λ

 =

 eAv

e−A∗λ

 (3.36)

and one can easily check that such diffeomorphisms preserve the Courant bracket

eAJV, WK = JeAV, eAWK (3.37)

In a similar way one can consider the B-field transformations B =

0 0

B 0

, for

which it can be very easily checked that B2 = 0 and by expanding the exponentia-

tion one obtains

eB = 12d + B +
1
2

B2 + · · · =

1d 0

B 1d

 (3.38)

and the B-field transformation applied to generalised vector V gives

eBV =

1d 0

B 1d


v

λ

 =

 v

B(v) + λ

 (3.39)

with B(v) = ivB.

Now one can check if the Courant bracket is preserved by writing

JeBV, eBWK = Jv + (λ + ivB), w + (ρ + iwB)K

= [v, w] + Lv(ρ + iwB)−Lw(λ + ivB)− 1
2

d(iv(ρ + iwB)− iw(λ + ivB))

= [v, w] + Lvρ−Lwλ− 1
2

d(ivρ− iwλ) + Lv(iwB)−Lw(ivB) + d(iwivB)

= JV, WK+ Lv(iwB)−Lw(ivB) + d(iwivB)

(3.40)

where the last line was obtained by noting the antisymmetry of iviwB.
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In order to continue we note that

Lw(ivB) = (diw + iwd)ivB = d(iwivB) + iwd(ivB) (3.41)

and so 3.40 becomes

JeBV, eBWK = JV, WK+ Lv(iwB)− d(iwivB)− iwd(ivB) + d(iwivB)

= JV, WK+ Lv(iwB)− iwd(ivB)

= JV, WK+ Lv(iwB)− iw(LvB− ivdB)

= JV, WK+ Lv(iwB)− iwLvB + iwivdB

(3.42)

One can write in coordinates the second term from the last line as

Lv(iwB) =
(

vα ∂(wµBµν)

∂xα
+ wµBµα

∂vα

∂xν

)
dxν (3.43)

and the third term as

iwLvB = iw

((
vα ∂(Bµν)

∂xα
+ Bµα

∂vα

∂xν
+ Bαν

∂vα

∂xµ

)
dxµ ∧ dxν

)
=

(
wµvα ∂(Bµν)

∂xα
+ wµBµα

∂vα

∂xν
+ wµBαν

∂vα

∂xµ

)
dxν

(3.44)

and so combining 3.43 and 3.44

Lv(iwB)− iwLvB =

(
vα ∂wµ

∂xα
− wα ∂vµ

∂xα

)
Bµνdxν = i[v,w]B (3.45)

One can then plug in 3.45 to 3.42 and obtain that

JeBV, eBWK = JV, WK+ i[v,w]B + iwivdB (3.46)
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Now applying the B-field transformation 3.39 on the Courant bracket one can

write

eBJV, UK = eB([v, u] + Lvρ−Luλ− 1
2

d(ivρ− iuλ))

= i[v,u]B + [v, u] + Lvρ−Luλ− 1
2

d(ivρ− iuλ)

= JV, UK+ i[v,u]B

(3.47)

From 3.46 and 3.47 one can see that the B-field transformation preserves the Courant

bracket under the restriction that B is a closed form i.e. if dB = 0.

Lastly it can be checked that both diffeomorphisms and B-field transformations

preserve the generalised inner product. For the B-field, one can easily obtain that

〈eBV, eBU〉 = 〈v + ivB + λ, u + iuB + ρ〉

= 〈v, ρ + iuB〉+ 〈λ + ivB, u〉

=
1
2
((λ + ivB)(u) + (ρ + iuB)(v))

=
1
2
(λ(u) + ρ(v)) +

1
2
(ivB(u) + iuB(v))

= 〈V, U〉+ 1
2
(iviuB + iuivB)

= 〈V, U〉

(3.48)

where again when going from the fifth line to the last line we made use of the

antisymmetry of iviuB.

3.5 Generalised Riemmanian Metric

In our theory the antisymmetric two-form field B together with a Riemannian met-

ric g : TM× TM → R (i.e. symmetric and positive definite) play a very important

role. In order to introduce a generalised metric which combines both these fields,

one needs to decompose our generalised tangent bundle into two d-dimensional

subbundles of E, one maximal subspace which we will denote C+ where the in-

ner product is positive definite, and one maximal subspace which we will denote
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C− where the inner product is negative definite, orthogonal to each other [4]. As

a result, the subgroup of O(d, d) that will preserve both metrics separately is then

O(d)×O(d). [13]

One can then define a generalised metric operator [13]

G : E = C+ ⊕ C− → E

V = V+ + V− → GV ≡ 〈V, ·〉|C+ − 〈V, ·〉|C−
(3.49)

To find an explicit form of the splitting we also introduce an operator ψ̂ : TM→

T∗M such that for all v ∈ TM one has

〈v + ψ̂(v), v + ψ̂(v)〉 > 0 (3.50)

This then gives the explicit form of the decomposition, with the two subspaces

C± ≡ {v + ψ̂±(v) | v ∈ TM} (3.51)

where ψ̂+ = B + g in C+ and ψ̂− = B− g in C− to satisfy the definitions for C+ and

C− [13]. One can note that applying the B-field transformation onto the following

object gives:

eB(v + g(v)) = v + g(v) + B(v) = v + ψ̂+(v) ∈ C+ (3.52)

and similarly

eB(v− g(v)) = v− g(v) + B(v) = v + ψ̂−(v) ∈ C− (3.53)

This leads us to define an additional pair of subspaces, C+ and C−, given by

C+ ≡ {v + g(v) | v ∈ TM}

C− ≡ {v− g(v) | v ∈ TM}
(3.54)
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which satisfy

C+ = eBC+

C− = eBC−
(3.55)

These are thus defined under the condition that B = 0 and they give a generalised

metric G that only depends on g. Note that the decomposition of ψ̂ with B and g is

due to the fact that ψ̂ behaves similarly to a (0, 2)-tensor, since it acts on vectors and

gives one-forms, so it can be decomposed into a symmetric (g) and antisymmetric

(B) part.

One can also note that applying G in the following way gives:

G(V+ + V−) = G(2v) = V+ −V− = 2g(v) (3.56)

and similarly

G(V+ −V−) = G(2g(v)) = V+ + V− = 2v (3.57)

where V+ ∈ C+ and V− ∈ C−. This allows us to calculate the explicit form of G as

G =

0 g−1

g 0

 (3.58)

One can also observe that with 3.58 one can show that

GV+ = V+ and hence GC+ = C+

GV− = −V− and hence GC− = −C−
(3.59)

and by using the first lines of 3.59, 3.55 and GC+ = C+ from the definition of G and

C+, one can write

C+ = GeBC+ = GeBGC+ = eBC+ ⇒ GeBG = eB (3.60)
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From here follows that e−BGeB = G−1 but we can also calculate the inverse of

G and we obtain that G−1 = G. Hence we arrive at e−BGeB = G or alternately

G = eBGe−B (3.61)

From this, one can calculate the generalised Riemannian metric G explicitly by

plugging in 3.38 and 3.58 and obtain

G =

 −g−1B g−1

g− Bg−1B Bg−1

 (3.62)

The matrix form of the generalised metric G shows explicitly the manner in which

the B-field and metric g are combined and captures the degrees of freedom of the

NSNS sector from Type II theories [22], as detailed in the original generalised ge-

ometry formulation by Hitchin [15] and Gualtieri [14].
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Chapter 4

GL+(d + 1, R) Generalised

Geometry

As previously seen in Chapter 3, one can construct a generalised geometry based

on the fibre bundle E ' TM⊕ T∗M and have a natural O(d, d) action on its frame

bundle. Then setting up a generalised metric G structure gives the degrees of free-

dom of the NSNS sector for Type II theories [22]. This was initially considered

in detail in [15] and [14] but there are other geometries capturing bosonic degrees

of freedom [22] in other types of theories, on different generalised tangent spaces,

such as [19] [25] or [33].

This Chapter studies another generalised geometry centered around a different,

1
2 d(d + 1)-dimensional, generalised tangent space with structure group GL+(d +

1, R). This fibre bundle arises naturally when considering a theory with a d-form

field strength as is the case for the sphere background and as will become apparent

shortly.

The Chapter starts with an introduction and motivation for the generalised tan-

gent space, showing how it parametrises the symmetries of the theory via the Dorf-

man derivative and how this defines specific patching rules that give the composi-

tion of the bundle. It then proceeds with the introduction of a generalised metric

and a definition of conformal split frames that will be used in the next Chapter to

provide a notion of GL+(d + 1, R) generalised parallelisability on spheres.
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4.1 Generalised Tangent Space, Patching Rules and Dorf-

man Derivative

The purpose of extending our geometry to this generalised version is, as it was

the case previously, so that the new generalised tangent space can parametrise the

infinitesimal symmetries of the theory. Similarly to O(d, d) generalised geometry,

these symmetries are diffeomorphisms, parametrised infinitesimally by a vector com-

ponent v and gauge symmetries, parametrised infinitesimally by a form component

λ. The difference from the O(d, d) case is that now we are interested in a theory

in d dimensions with a d-form field strength F = dA on a round sphere Sd. This

prompts the following gauge symmetry for the potential A:

Ai = Aj + dΛij (4.1)

on a patch overlap Ui ∩Uj, with Λ being a (d− 2)-form.

Adding up the number of degrees of freedom we obtain a total space E with

dimensionality

dim(E) = dim(v) + dim(λ) = d +
1
2

d(d− 1) =
1
2

d(d + 1) (4.2)

which gives the generalised tangent space

E ' TM⊕Λd−2T∗M (4.3)

Then a generalised vector V ∈ E can be written as V = v + λ and is given in

components by

VM =

 vm

λm1 ...md−2

 (4.4)

with the patching rules on the overlap Ui ∩Uj for E as per usual [22]

vi + λi = vj + λj + ivj dΛij (4.5)
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Here vi ∈ TUi and λi ∈ Λd−2T∗Ui. Considering a choice of connection A and

generalised vectors Ṽ ∈ TM⊕ Λd−2T∗M and V ∈ E, one can then define the "A-

shift operator" [22] that gives the isomorphism between E and TM⊕Λd−2T∗M :

V = ṽ + λ̃ + iṽ A ≡ eAṼ (4.6)

Sections of the bundle E transform in a very natural way under the action of

structure group GL+(d + 1, R) in the 1
2 d(d + 1)-dimensional bivector representa-

tion [33], which can be seen explicitly by writing the generalised vector components

as [22]

VM = Vmn =


Vm,d+1 = vm ∈ TM

Vmn = λmn ∈ Λ2TM ⊗ detT∗M ' Λd−2T∗M
(4.7)

where we are using a generalised vector index M given by the antisymmetric pair

[m, n], m, n ∈ 1, . . . , d + 1 of indices in GL+(d + 1, R) and the isomorphism in the

second line between bivector densities and (d− 2)-forms is given through [22]

λmn =
1

(d− 2)!
εmnp1...pd−2 λp1 ...pd−2 (4.8)

There is also a natural definition of a generalised partial derivative operator that

is embedded in the dual generalised tangent space E∗ ' T∗M⊕Λd−2TM through

the map T∗M→ E∗ and is given by [5]

∂M = ∂mn =


∂m,d+1 = ∂m ∈ T∗M

∂mn = 0 ∈ Λd−2TM
(4.9)

Let V = v + λ and W = w + µ be two sections of generalised tangent space E.

Then the Dorfman derivative is written via 3.17 in the usual way

LVW = [v, w] + Lvµ− iwdλ (4.10)



Chapter 4. GL+(d + 1, R) Generalised Geometry 33

with the generalised Lie bracket written as mentioned before via the antisymmetriza-

tion of the generalised Lie derivative i.e.

JV, WK =
1
2
(LVW − LWV) (4.11)

Considering the ordinary Lie derivative acting on a vector 2.10, one can see that

if we write the ∂v in the second term as a matrix Aa
b := ∂bva, we can consider the

second term as the adjoint action of gl(d) on vector u. In a similar manner one can

write the analogous part from the explicit equation of the Dorfman derivative as

the adjoint action of the Lie algebra of the structure group and obtain the result

from [5]

(LVW)M = (V · ∂)WM − (∂×ad V)M
NWN (4.12)

where the corresponding adjoint bundle taken from [22] is given by

adF̂ ' R⊕ (TM⊗ T∗M)⊕Λd−1TM⊕Λd−1T∗M (4.13)

showing the decomposition of the Lie algebra and ×ad is the projection to the ad-

joint representation of Lie algebra gl(d + 1, R), i.e. to the adjoint bundle adF̂

×ad : E∗ ⊗ E→ adF̂ (4.14)

One can plug in the matrices and calculate explicitly the contraction and the

adjoint projection in order to obtain the two terms in the expression of the Dorfman

derivative [22]

V · ∂ = VM∂M =
1
2

Vmn∂mn = vm∂m

(∂×ad V)m
n = Vmp∂np −

1
4

Vpq∂pqδm
n

(4.15)

which gives the manner in which the generalised tangent space parametrises the

two infinitesimal symmetries of the theory.
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4.2 Generalised Metric and Conformal Split Frames

Similarly to the O(d, d) case, a generalised metric G is parametrised by the degrees

of freedom of the theory. In the GL+(d+ 1, R) case, there are the bosonic degrees of

freedom given by the (d− 1)-form A and 2-form g, as well as an additional overall

scale factor ∆, linked to warped compactifications in Supergravity theories [3].

This means one can extend 4.6 to write V = e∆eAṼ and using the contraction

of two generalised objects from the first line of 4.15, where ∂ is replaced by another

generalised vector, one can obtain the matrix form of G, given in [22] as

G(V, V) = GMNVMVN

= gmnṽmṽn +
1

(d− 2)!
gm1n1 . . . gmd−2nd−2 λ̃m1...md−2 λ̃n1 ...nd−2

= VT · e−2∆

gmn +
1

(d−2)! Am
n1...nd−2 Ann1...nd−2 −Am

n1...nd−2

An
m1 ...md−2 (d− 2)!gm1...md−2,n1 ...nd−2

 ·V
(4.16)

Here gm1 ...md−2,n1...nd−2 = g[m1|n1 . . . gmd−2]nd−2 separately antisymmetrised on differ-

ing indices and G is invariant under subgroup SO(d + 1) [22].

However, instead of writing the generalised metric with four indices in compo-

nents as above, there is a more intuitive way of showcasing the SO(d + 1) invari-

ance. One can instead make use of the determinant bundle detTM = ΛdTM and

its dual detT∗M = ΛdT∗M to define the following bundle [22]

W ' (detT∗M)1/2 ⊗ (TM⊕ΛdTM)

' (detT∗M)1/2 ⊗ (TM⊕ (detT∗M)−1)

' (detT∗M)1/2 ⊗ TM ⊕ (detT∗M)−1/2

(4.17)

for which one can note after the above isomorphism that its sections K ∈ W,

K = q + t will transform in the (d + 1)-dimensional fundamental representation
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of GL+(d + 1, R) and they can be labelled via one index only, namely

Km =


Vm = qm ∈ (detT∗M)1/2 ⊗ TM

Vd+1 = t ∈ (detT∗M)−1/2
(4.18)

while we can link E with W via E = Λ2W.

We can then write the new SO(d+ 1) invariant generalised metric, now labelled

only by two indices, on the bundle W, which in [22] is given as

G(K, K) = GmnKmKn

= KT · e−∆
√

g

 gmn gmn An

gnp Ap detg + gpq Ap Aq

 · K (4.19)

and with Am being the equivalent to Am1 ...md−1 from 4.16 in terms of vector-density

[22]. With this and the relation between E and W, the generalised metric on E can

be simply written as

G(V, V) =
1
2

GmpGnqVmnVpq (4.20)

We can now define a local orthonormal frame for G, i.e. a set of GL+(d + 1, R)

bases of E, labelled {ÊA}, where by GL+(d + 1, R) basis we understand a basis re-

lated to a local coordinate basis on a patch of E via a GL+(d + 1, R) transformation.

This in term defines a principal sub-bundle of the frame bundle of E, which is the

generalised GL+(d + 1, R) structure bundle F̃ [3]

F̃ = {(x, {ÊA}) | x ∈ M, {ÊA} is a GL+(d + 1, R) basis of E} (4.21)

with fibre GL+(d+ 1, R). Now let êa be the usual orthonormal frame for TM and ea

its dual counterpart for T∗M. We can define a new class of generalised orthonormal

frames that depend on these conventional frames and the isomorphism 4.3, given
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by the following splitting [22] [3] [4]

Êij =


Êa,d+1 = e∆(êa + iêa A)

Êab = 1
(d−2)! e

∆εabc1...cd−2 ec1 ∧ · · · ∧ ecd−2

(4.22)

They are called conformal split frames for E (simply "split frames" if ∆ = 0) and their

class defines a sub-bundle of F̃. Note that their labelling is through antisymmetric

SO(d + 1) indices (i, j) due to the frames transforming as 2-forms under this group

[22]. They satisfy by definition the orthonormal condition

G(Êij, Êkl) = δikδjl − δilδjk (4.23)

If we want to build a similar frame on the space W, we can define it through

Êij = Êi ∧ Êj, where Êi is the new frame, and we can also write its dual Êi ∈ W∗ as

given in [22] via

Ei =


Ea = g−1/4e−∆/2(ea − ea ∧ A)

Ed+1 = g−1/4e−∆/2volg

(4.24)

With the dual frames on W defined one can simply express the generalised met-

ric for W from 4.19 using

Gmn = δijEi
mEj

n (4.25)

And we should also note that a local SO(d + 1) rotation U of the generalised

frame

Ê′ij = Ui
kUj

l Êkl (4.26)

renders an equally valid frame [22].
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Chapter 5

Spheres and Generalised

SL(d + 1, R) Scherk–Schwarz

reduction

Given a regular tangent space TM from non-generalised differential geometry, if it

admits a global frame i.e. a set of globally defined basis vectors that form a smooth

vector field this means the space is topologically trivial and we call it parallelisable

[22]. When it comes to spheres, similar notions of parallelisability have only been

proven to exist for S1, S3 and S7 [1] [21]. By employing the GL+(d + 1, R) gener-

alised geometry however, [22] shows that if the tangent bundle on the sphere is

trivial (i.e. admits a global generalised frame), this extension of the geometry de-

fines a concept of "generalised parallelisability" that can be applied to all spheres.

This Chapter will follow [22] to introduce this notion of generalised parallelis-

ability for the Sd after defining an appropriate global frame on the sphere and pre-

senting some key geometry characteristics of the space of Sd. It will then introduce

the notion of a generalised Scherk–Schwarz [29] reduction on this global frame and

will show how the resulting fields match the standard scalar field ansatz for con-

sistent truncations on spheres [22].
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5.1 The Sd Sphere as a Generalised Parallelisable Space

We start with a theory in d dimensions that has a d-form field strength F = dA

as mentioned previously and that gives a metric solution corresponding to a Sd

sphere. Such a theory needs to solve the following equations of motion

Rmn =
1

d− 1
F2gmn

F =
d− 1

R
volg

(5.1)

where R is the radius of the sphere, F2 = 1
d! Fm1 ...md Fm1 ...md and g is the metric form

field from the theory [22].

Starting with the Cartesian coordinates xi = ryi and constrained coordinates

δijyiyj = 1 that give the equation of the sphere, we will be following [22] to intro-

duce several key objects from the geometry of Sd with radius r = R that will be

employed in the next sections. The metric g on the sphere is [22]

ds2 = R2δijdyidyj (5.2)

Additionally we have
∂

∂xi = yi
∂

∂r
+

ki

r
(5.3)

We have d + 1 conformal Killing vectors ki obeying [22]

Lki g = −2yig (5.4)

with the metric components being written as [22]

gmn = R−2δijki
mk j

n (5.5)

This can be obtained by writing ĝ = dxidxi, with wi = ∂
∂xi and in terms of the

radius, ĝ = dr2 + r2g, with g = δijdyidyj. Since the Killing vectors preserve the
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metric and the flows generated by the Killing vector fields are continuous isome-

tries of the manifold [34], one has the condition Lwi ĝ = 0. By calculating wi using

5.3 and substituting it and ĝ into the condition, one can obtain the relation for con-

formal Killing vectors 5.4.

From [22] we also have that

ki(yj) = iki dyj = R−2g(ki, k j) = R2g−1(dyi, dyj) = δij − yiyj (5.6)

Following [22] one can also define the SO(d + 1) rotation Killing vectors:

vij = R−1(yik j − yjki) (5.7)

which satisfy [22]

[vij, vkl ] = R−1(δikvl j − δilvkj − δjkvli + δjlvki) (5.8)

and additionally from [22] we have

Lvij yk = R−1(yiδjk − yjδik)

Lvij dyk = R−1(dyiδjk − dyjδik)
(5.9)

For r = 1 on the sphere the volume form on Sd can be calculated following

[11]. A similar procedure can be employed for r = R and by writing in terms of

the totally antisymmetric symbol ε and radius R one can give the volume form

according to [22] as

volg =
Rd

d!
εi1...id+1 yi1dyi2 ∧ · · · ∧ dyid+1 (5.10)

We also define the 2-form ω given by [22]

ωij = R2dyi ∧ dyj (5.11)
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which geometrically can be interpreted as the projection from the tangent space at

the pole onto the rest of the sphere. Hence, we can now define a key object for the

structure of the generalised frame, given by the Hodge dual of ω and interpreted

as its orthogonal complement [22]

σij = ?ωij =
Rd−2

(d− 2)!
εijk1...kd−1 yk1dyk2 ∧ · · · ∧ dykd−1 (5.12)

After introducing all the important geometry elements from above, we can now

proceed to define the generalised global frame by [22]

Êij = vij + σij + ivij A (5.13)

with A being the potential that gives the d-form field strength F = dA. Addition-

ally from [22] we have the contractions for v and σ given by

vij · vkl := (vij)
m(vkl)m = yiykδjl − yjykδil − yiylδjk + yjylδik (5.14)

and

σij · σkl :=
1

(d− 2)!
(σij)

m1 ...md−2(σkl)m1 ...md−2

= δikδjl − δilδjk − (yiykδjl − yjykδil − yiylδjk + yjylδik)

= δikδjl − δilδjk − vij · vkl

(5.15)

Hence one can see that

G(Êij, Êkl) = vij · vkl + σij · σkl = δikδjl − δilδjk (5.16)

which is the required orthonormality condition 4.23, making our frame orthonor-

mal to the generalised metric on Sd. The dual frame is also globally defined in [22]

by

Ei = g−1/4(Rdyi + yivolg − Rdyi ∧ A) (5.17)
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and one can check that because dyi = 0 only when y2
i = 1 due to the constrained

coordinates, the dual frame is also non-vanishing.

In order to arrive at the notion of trivial space and generalised parallelisability,

we need to calculate the generalised geometry equivalent of the Lie bracket algebra

for our generalised frame. Starting with the Dorfman derivative given by the usual

expression, we obtain

LÊij
Êkl = [vij, vkl ] + Lvij(σkl + ivkl A)− ivkl d(σij + ivij A)

= [vij, vkl ] + Lvij σkl + Lvij(ivkl A)− ivkl (dσij + divij A)

= [vij, vkl ] + Lvij σkl + Lvij(ivkl A)− ivkl (dσij + Lvij A− ivij dA)

= [vij, vkl ] + Lvij σkl + Lvij(ivkl A)− ivkl (Lvij A)− ivkl (dσij − ivij F)

= [vij, vkl ] + Lvij σkl + i[vij,vkl ]A− ivkl (dσij − ivij F)

(5.18)

where in going from the second to the third line we used 2.14 and from the fourth

to get the fifth line we used 3.45.

In order to proceed, we can write F = R−1(d − 1)volg from the equations of

motion 5.1 so that ivij F now depends on ivij volg. The Lie derivative of σ is given by

[22] as

Lvij σkl = R−1(δikσl j − δilσkj − δjkσli + δjlσki) (5.19)

and we now only need ivij volg

ivij volg = − Rd−1

(d− 1)!
(yiεjk1 ...kd − yjεik1...kd)y

k1dyk2 ∧ · · · ∧ dykd (5.20)

We can use the antisymmetry of ε i.e. y[iεi2 ...id+2] = 0 to rewrite 5.20 according to

[22] as

ivij volg = −Rd−1(d− 1)
(d− 1)!

yk1 εijk2 ...kd y[k1dyk2 ∧ · · · ∧ dykd]

= − Rd−1

(d− 1)!
εijk1 ...kd−1dyk1 ∧ · · · ∧ dykd−1

=
R

d− 1
dσij

(5.21)
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Now we can use 5.21 to write ivij F as

ivij F = R−1(d− 1) ivij volg = dσij (5.22)

which in turn cancels the term in round brackets from 5.18 and hence we obtain

LÊij
Êkl = [vij, vkl ] + Lvij σkl + i[vij,vkl ]A (5.23)

One can now use 5.19 and the previous result from 5.8 to re-write the gener-

alised Lie derivative for the frames as

LÊij
Êkl = R−1(δikvl j − δilvkj − δjkvli + δjlvki + δikσl j − δilσkj − δjkσli + δjlσki) + i[vij,vkl ]A

= R−1(δik(vl j + σl j)− δil(vkj + σkj)− δjk(vli + σli) + δjl(vki + σki)) + A([vij, vkl ])

= R−1(δik(vl j + σl j)− δil(vkj + σkj)− δjk(vli + σli) + δjl(vki + σki)

+ δik A(vl j)− δil A(vkj)− δjk A(vli) + δjl A(vki))

= R−1(δik(vl j + σl j + ivl j A)− δil(vkj + σkj + ivkj A)

− δjk(vli + σli + ivli A) + δjl(vki + σki + ivki A))

= R−1(δikÊl j − δil Êkj − δjkÊli + δjl Êki)

= JÊij, ÊklK

(5.24)

and so the generalised Lie bracket algebra we needed is actually the Lie algebra

so(d + 1) [22], which as it will become apparent in the next section is the key result

we needed for the notion of generalised parallelisability.

5.2 Generalised SL(d + 1, R) Scherk–Schwarz reduction on

the Round d-Sphere

The result in 5.24 has shown that from the standpoint of generalised geometry the

sphere Sd behaves like a local group manifold, i.e. it is generalised parallelisable,
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similarly to a regular parallelisable manifold that has the form of its Lie bracket

algebra of frame êa given by [22]

[êa, êb] = fab
c êc (5.25)

with constant fab
c. For the case of the conventional parallelisable manifolds it was

proven that if fab
b = 0 the space admits consistent truncations [10] [7] and the

subsequent truncated theory has scalar fields that correspond to a Scherk-Schwarz

reduction [29] [28]. Such a reduction consists of constant GL(d.R) rotations of the

frame on the manifold, given by ê′a = Ua
b(x)êb, with g′mn = Hab(x)êm

a ên
b and sym-

metric Hcd = δabUa
cUb

d [22].

This prompts the notion of a generalised Scherk-Schwarz reduction

Ê′ij = Ui
k(x)Uj

l(x)Êkl (5.26)

given via the frame deformations Ui
k(x) ∈ GL(d + 1, R) that depend on the coor-

dinates in the non-truncated space but are constant on M. Defining the symmetric

matrices Tkl = δijUi
kUj

l , we can write the inverse of the generalised metric in the

previous chapter, given in [22] by

G′MN
=

1
2

TikT jl ÊM
ij ÊN

kl (5.27)

and given explicitly in terms of A′, g′ and ∆′ in [22] by

G′MN
= e2∆′

 g′mn g′mp A′pn1...nd−1

g′np A′pm1 ...md−1 (d− 2)!g′m1 ...md−2,n1 ...nd−2
+ A′pm1...md−2 A′pn1 ...nd−2


(5.28)

Expressions 5.27 and 5.28 can be compared to obtain equations between the

fields and the symmetric T matrices. Following the analysis detailed in [24] and
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[22] one can eventually arrive at the result

ds′2 =
R2

(Tklykyl)2/(d−1)
T−1

ij dyidyj

A′ = − Rd−1

2(Tklykyl)(d− 2)!
εi1...id+1(T

i1 j
yj)y

i2dyi3 ∧ · · · ∧ dyd+1 + A

e2∆′ = (Tklykyl)
(d−3)/(d−1)

(5.29)

which is in agreement with the scalar field ansatz for consistent truncations on

spheres [22] [24].
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Chapter 6

Consistent Truncations on S3

The classical Supergravity sphere solutions for S3 are given by the "near-horizon

Neveu-Schwarz fivebrane background" [22] and correspond to a S3 consistent trun-

cation to a seven-dimensional gauged Supergravity theory, as shown in detail in [8].

This Chapter will start by presenting the explicit context of generalised parallelis-

ability for the 3-sphere, following [22] and will then continue with a discussion on

the relation between this context and gauged Supergravity.

6.1 SO(3, 3) Generalised Geometry on the 3-Sphere

The solution of the near-horizon limit for NS fivebranes in type II Supergravity was

given in [2] by

ds2 = ds2(R5,1) + dt2 + R2ds2(S3)

H = 2R−1volg

φ = − t
R

(6.1)

and corresponds to a "3-sphere times a linear dilaton background", with R the ra-

dius of S3 [22]. From the standpoint of GL+(d + 1, R), i.e. GL+(4, R) generalised

geometry our generalised tangent space is in this case

E ' TM⊕ T∗M (6.2)
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with structure group O(d, d) [22] as previously reviewed in Chapter 3. We can iden-

tify B = −A to preserve the conventions that we previously employed in O(d, d)

and define the generalised frame by

Êij = vij + σij − ivij B (6.3)

We then proceed to define the left-invariant and right-invariant vector fields on

the 3-sphere given in [22] by

l+ = l1 + il2 = R−1e−iψ(∂θ + i csc θ∂φ − i cot θ∂ψ)

l3 = R−1∂ψ

r+ = r1 + ir2 = R−1eiφ(∂θ + i cot θ∂φ − i csc θ∂ψ)

r3 = R−1∂φ

(6.4)

and similarly the left-invariant and right-invariant one-form fields on S3 [22]

λ+ = Re−iψ(dθ + i cos θdφ)

λ3 = R(dψ + cos θdφ)

ρ+ = Reiφ(dθ + i sin θdψ)

ρ3 = R(dφ + cos θdψ)

(6.5)

in the usual spherical notation. Additionally we choose the gauge [22]

B = 2R cos θdφ ∧ dψ (6.6)

We can define the left- and right-invariant bases for the two tangent spaces that
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compose our generalised bundle through the "anti-self-dual and self-dual combi-

nations of Êij", explicitly via [22] by

ÊL
+ = l+ − λ+ − il+B

= e−iψ
(
(R−1∂θ − Rdθ) + i csc θ(R−1∂φ − Rdφ)− i cot θ(R−1∂ψ + Rdψ)

)
ÊL

3 = l3 − λ3 − il3 B = R−1∂ψ − Rdψ

(6.7)

and

ÊR
+ = r+ − ρ+ − ir+B

= eiφ
(
(R−1∂θ + Rdθ) + i cot θ(R−1∂φ − Rdφ)− i csc θ(R−1∂ψ + Rdψ)

)
ÊR

3 = r3 − ρ3 − ir3 B = R−1∂φ + Rdφ

(6.8)

One can check they are orthonormal since given

ÊA =

ÊR
a

ÊL
ā

 (6.9)

we can write

η(ÊA, ÊB) =

δab 0

0 −δāb̄


G(ÊA, ÊB) =

δab 0

0 δāb̄


(6.10)

where G is the generalised metric without warped compactification factors and η

is the O(3, 3) metric η(V, V) = ivλ for V = v + λ [22]. Similarly, the Dorfman

derivatives on the frames can be shown to be [22]

LÊL
ā
ÊL

b̄ = JÊL
ā , ÊL

b̄ K = R−1εāb̄c̄ÊL
c̄

LÊR
a

ÊR
b = JÊR

a , ÊR
b K = R−1εabcÊR

c

LÊL
ā
ÊR

a = JÊL
ā , ÊR

a K = 0

(6.11)
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and we obtain the su(2)× su(2) algebra.

6.2 S3 and Gauged Supergravity

There is a well known result [8] that a type II Supergravity consistent truncation

exists on the 3-sphere and the truncated theory is a maximal 7-dimensional SO(4)

gauged Supergravity [22]. More explicitly, in order to define a gauged Supergravity

the following condition is required [27]

[XA, XB] = −XAB
CXC (6.12)

where XAB
C is the embedding tensor of the theory [22]. From the standpoint of the

generalised geometry this constraint comes naturally from the Leibniz identity of

the Dorfman derivative for the frame, X being encoded in the frame algebra [22].

Additionally, one can calculate in a similar manner to the previous section the

scalar fields for the truncated theory, the B-field and the metric for this particular

case. These are given in [22] by

ds′2 =
R2

Tklykyl
T−1

ij dyidyj

B′ =
R2

2(Tklykyl)
εi1i2i3i4(T

i1 j
yj)y

i2dyi3 ∧ dyi4 + B

e2∆′ = 1

(6.13)

with a trivial warped compactification factor. By comparing these results with the

fields in [8] for the consistent truncation on the 3-sphere one can see they are in

complete agreement.
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Chapter 7

Further Considerations and

Conclusions

This work presented an introduction to the mathematical framework of Gener-

alised Geometry (GG) through the O(d, d) GG, and then described in a unifying

approach the "maximally supersymmetric consistent truncations" [22] through this

generalised geometry framework in the form of the GL+(d + 1, R) GG.

We showed that there is natural notion of generalised parallelisability on M,

analogous to the concept of a local group manifold but given in terms of the gen-

eralised geometry if the generalised tangent space E admits globally a generalised

frame {ÊA} that satisfies

LÊA
ÊB = XAB

CÊC (7.1)

where LÊA
ÊB gives the generalised Lie derivative of the frame and XAB

C is constant.

The existence of the generalised global frame then leads to the consideration of

a generalised Scherk-Schwarz reduction by a rotation of the frame, with XAB
C as

the embedding tensor of the truncated theory [22]. This allowed us to present the

proof that all round spheres admit such generalised parallelisations by calculating

the generalised Lie bracket of the generalised frame. As a consequence, all sphere

compactifications can be viewed in the same "algorithmic" way from the perspec-

tive of a generalised Scherk-Schwarz reduction.
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One potential area of future study on this matter can be on proving the con-

sistency of the truncations. In presenting this work we employed the conjecture,

based on analogy with the conventional case, that there is a consistent truncation

given a generalised parallelisation, but we have not fully proved this. Rather, we

just presented the agreement with the scalar field ansatz.

Another potential subject that arises from the work presented here is the classi-

fication of the manifolds M that admit such generalised parallelisations through the

globally defined generalised frame. This can potentially lead to a "class of maximal

gauged supergravities that appear as consistent truncations" [22].
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Appendix A

Principal Bundles extended

We will define in this Appendix the rest of the key notions building up the concept

of Principal Bundles not covered in 2.3.11, following primarily [30].

Let (G, •) be a Lie group and let M be a smooth manifold.

Definition A.0.1 A left G-action on M is a smooth map

. : G×M→ M

(g, p)→ g . p
(A.1)

that satisfies:

• ∀p ∈ M, e . p = p

• ∀p ∈ M, ∀g1, g2 ∈ G, (g1 • g2) . p = g1 . (g2 . p)

and a manifold that has a left-G action is called a left G-manifold.

Definition A.0.2 A right G-action on M is a smooth map

/ : M× G → M

(p, g)→ p / g
(A.2)

that satisfies:

• ∀p ∈ M, e / p = p

• ∀p ∈ M, ∀g1, g2 ∈ G, p / (g1 • g2) = p / (g1 / g2)
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and similarly, a manifold that has a right-G action is called a right G-manifold.

Definition A.0.3 If we have a left G-action . : G×M → M, the orbit of p, for each

p ∈ M is defined as the set

Gp := {q ∈ M | ∃g ∈ G s.t. q = g . p} (A.3)

It can be shown that given a left G-action on M . : G × M → M, we can define

a relation on M, p ∼ q, given by the statement: ∃g ∈ G s.t. q = g . p, that is an

equivalence relation on M. [30] Then by definition A.0.3, the equivalence classes

of ∼ are the orbits.

Definition A.0.4 Then with the above-mentioned left G-action on M . : G×M →

M, we can define the orbit space of M as

M/G := M/ ∼= {Gp | p ∈ M} (A.4)

Definition A.0.5 Given a G-action on M, ., the stabiliser of p ∈ M is a subgroup of

G defined as

Sp := {g ∈ G | g . p = p} (A.5)

Definition A.0.6 A left G-action . : G×M→ M is said to be

1. free if ∀p ∈ M, then Sp = {e}

2. transitive if ∀p, q ∈ M, ∃g ∈ G s. t. p = g . p

It can also be shown [30] that given a . : G ×M → M free left G-action on M, for

p ∈ M and g1, g2 ∈ G

g1 . p = g2 . p ⇔ g1 = g2 (A.6)

and then

∀p ∈ M : Gp ∼=di f f G (A.7)

with all the above-mentioned concepts in the end naturally leading to the notion of

Principal Bundle defined in 2.3.11.
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Appendix B

Frame Bundles

In this section we will be following [23] to introduce the concept of Frame Bundle,

which is used later when defining conformal split frames on the GL+(d + 1, R)

generalised geometry.

Definition B.0.1 Given a tangent bundle TM over an m-dimensional manifold M,

the frame bundle LM ≡ ∪
p∈M

Lp M is a principal bundle associated to TM, with

Lp M being the set of frames (all ordered bases) at p. We can write a frame u =

{X1, . . . , Xm} at p as Xα = Xµ
α∂/∂xµ|p, with 1 ≤ α ≤ m, in the natural basis

of Tp M, {∂/∂xµ}, with coordinates xµ on patch Ui. Here {Xα} are linearly inde-

pendent since components (Xµ
α) ∈ GL(m, R). LM has the structure of a bundle

defined through the following components:

1. The action of a ∈ GL(m, R) on the frame u is given by (u, a) → ua, where ua

is the new frame at p defined by

Yβ = Xαaα
β (B.1)

We can show ([30]) that GL(m, R) acts transitively on LM, since we can always

find an element of GL(m, R) that satisfies B.1 for any {Xα}, {Xβ}.

2. We can define πL : LM→ M as πL(u) = p, for frame u.
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3. For p in an overlap of two charts, Ui ∩Uj, with coordinates xµ, xν respectively,

we have

Xα = Xµ
α∂/∂xµ|p = X̃µ

α ∂/∂yµ|p (B.2)

with the X matrices being part of GL(m, R). The relation between the two is

Xµ
α = (∂xµ/∂yν)pX̃µ

α and so the transition functions will be

tL
ij(p) = ((∂xµ/∂yν)p) ∈ GL(m, R) (B.3)

and so LM is a frame bundle with the same transition functions as initial

tangent bundle TM.
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